2017考研数学:线性代数部分的重要考点
求学快递网考研专题重点推荐:2016年考研数学辅导、历年考研数学知识、考研数学考题参考、2016年数学辅导规划的重点知识、考研数学辅导资料、考研数学辅导书推荐等信息,为方便您随时了解相关考试信息,请收藏求学快递网考研专题。
线性代数部分的重要考点:一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。小编在此整理了“2017考研数学:线性代数部分的重要考点”,希望对于2017考研的同学能够有所帮助。
(1)齐次线性方程组与向量线性相关、无关的联系
齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:
①有唯一零解;
②有非零解。
当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。
(2)齐次线性方程组的解与秩和极大无关组的联系
同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。
(3)非齐次线性方程组与线性表出的联系
非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。
求学快递网考研专题的小编们根据网民搜索习惯第一时间公布了考研考试资讯、考研报考指南、考研复试与调剂、考研英语、考研政治、考研数学、考研专业课、考研综合复习指导、考研招生推荐等相关资讯,给考生朋友们提供学习和参考,祝考生朋友们顺利通过考试。
求学快递网考研专题重点推荐:考研数学大纲、考研数学真题、考研数学试题和考研数学辅导等最新考研信息,让您轻松备战考研!