求学快递网是国内领先的B2M2C教育培训网上信息平台!

首页 | 分站加盟 | 课程发布 | 最新课程 | 最新机构 | 培训专题 | 全国分站 | 帮助中心

考研分数线_考研成绩查询_考研时间_求学快递网

考研万提库
您的位置:求学快递网 > 考研专题 > 考研数学 > 数学辅导 > 2017考研数学:线性代数部分的重要考点 - 正文内容

2017考研数学:线性代数部分的重要考点

2017考研数学:线性代数部分的重要考点

 

求学快递网考研专题重点推荐:2016年考研数学辅导历年考研数学知识考研数学考题参考2016数学辅导规划的重点知识考研数学辅导资料考研数学辅导书推荐等信息,为方便您随时了解相关考试信息,请收藏求学快递网考研专题。

 

  线性代数部分的重要考点:一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。小编在此整理了“2017考研数学:线性代数部分的重要考点”,希望对于2017考研的同学能够有所帮助。

  (1)齐次线性方程组与向量线性相关、无关的联系

  齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。


  齐次线性方程组一定有解又可以分为两种情况:

  ①有唯一零解;

  ②有非零解。

  当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

  (2)齐次线性方程组的解与秩和极大无关组的联系

  同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

  (3)非齐次线性方程组与线性表出的联系

  非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

 

求学快递网考研专题的小编们根据网民搜索习惯第一时间公布了考研考试资讯考研报考指南考研复试与调剂考研英语考研政治考研数学考研专业课考研综合复习指导考研招生推荐等相关资讯,给考生朋友们提供学习和参考,祝考生朋友们顺利通过考试。

求学快递网考研专题重点推荐:考研数学大纲考研数学真题考研数学试题考研数学辅导等最新考研信息,让您轻松备战考研!

 

相关推荐

致2017考研人
教育部考研最新招生规定

最新考研资讯

热点专题

教育部考研招生管理规定

关于本站  诚征英才  广告服务  招生服务  免责声明  分站加盟  VIP会员  联系我们  网站地图  网站记事

版权所有 CopyRight 2008-2017 粤ICP备14009694号 www.studyems.com, Inc. All Rights Reserved
违法和不良信息举报邮箱:2881796407@qq.com 举报电话: